
An Experimental Evaluation of the Performance of RNA-Seq 
Mapping Tools 
ABSTRACT  
Transcriptome sequencing (RNA-Seq) has become a key technology in the field of 
transcriptomics for quantifying gene expression, detecting novel transcripts, analyzing 
RNA functions, etc. For organisms with reference genomes, mapping RNA-Seq reads 
to the genomic sequences is typically the first step to process RNA-Seq data. In the 
last few years, many algorithms and tools for mapping RNA-Seq reads have been 
developed. Since the objectives and constraints of these methods are usually different, 
their performance varies. How to choose the most appropriate mapping tools to 
analyse a specific RNA-Seq dataset so some particular performance expectations can 
be met is an important question that bioinformaticians need to address. Here, we 
provide a systematic experimental evaluation of some state-of-the-artRNA-Seq 
mapping tools by studying their accuracy in read alignment and junction detection on 
simulated RNA-Seq data with different sequencing depths,read lengths and rates of 
substitutions, indels and sequencing error. In addition, the time efficiency and 
memory usages of the tools will beinvestigated. We are also interested in the impact 
of paired-end reads on the performance of the tools and the question of to what degree 
the tools are able to take advantage of parallel computation. Some real data tests will 
be used to confirm the simulation results. We hope that our study will provide 
information useful for choosing suitable mapping tools in RNA-Seq data analysis. 
1. INTRODUCTION 
Transcriptome is an important part of the cell. RNA-seq based on next-generation 
sequencing(NGS) provides a powerful technique for transcriptome profiling(Wang, 
Gerstein et al. 2009). Bringing insights to quantifying gene expression, detecting 
novel transcripts, analyzing RNA functions, and etc., RNA-Seq is proved to be a 
accurate method to survey the entire transcriptome in a quantitative and high-
throughput way than expressed sequence tag(EST) sequencing and microarray 
technology. 
A critical step in analyzing RNA-Seq data is to map millions of reads back to a 
reference genome. Various mapping tools targeted on mapping DNA, RNA, miRNA 
or bisulfate reads, have been developed(Fonseca, Rung et al. 2012). With specific 
consideration to processing junction reads from RNA-Seq, RNA mapping tools plays 
an important role in analyzing RNA-Seq data.  
From early RNA-Seq mapping tools include TopHat(Trapnell, Pachter et al. 2009) 
, SpliceMap(Au, Jiang et al. 2010) and MapSplice(Wang, Singh et al. 2010) to newly 
published tools include OLego(Wu, Anczuków et al. 2013), TrueSight(Li, Li-Byarlay 
et al. 2012) and STAR(Dobin, Davis et al. 2012), over fifteen RNA-Seq mapping 
tools have been developed(see table 2). Which tool to choose according to certain 
time and memory constrain and data features is an issue waits to be addressed.  
Some review papers on mapping tools have been published to address this problem. 
Those papers either present a algorithmic summary (Garber, Grabherr et al. 2011) or 
summarize mapping tools documentations(Fonseca, Rung et al. 2012), yet provide 
few recommendation on choosing suitable mapping tools for RNA-Seq data.    
This paper aims testing seven state of the art RNA mapping tools, thus provide 
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information on different features of those tools and better guide choosing suitable tool 
fitting specific RNA-Seq data. 

2. METHODS 
Our evaluation consists of three steps: (1)simulate RNA-Seq reads by BEERS(Grant, 
Farkas et al. 2011)(2)map simulated reads to the reference genome by seven selected 
RNA mapping tools(3)evaluate the performance of mapping(see fig 1).  

!  
Fig 1. legend. Experimental evaluation process. (1)RNA-Seq dataset of human and 
mouse transcriptome with different features are generated by BEERS (2) Selected 
tools map reads to genomic reference dataset by dataset and take reads as single-
ended or paired-end separately. (3) Mapping result of each tool on each dataset as 
single-ended or paired-end reads is evaluated according criteria listed in the figure. (4) 
Four sets of evaluation results are obtained: HTSE( Evaluation on dataset of Human 
Transcriptome mapped as Single-ended reads), HTPE(Evaluation on dataset of human 
transcriptome mapped as paired-end reads), MTSE(Evaluation on dataset of mouse 
transcriptome mapped as single-ended reads), MTPE(Evaluation on dataset of mouse 
transcriptome mapped as paired-end reads). 

2.1.Experimental design  
(1) Simulate RNA-Seq Reads 
The "real" genomic locations of RNA-Seq reads generated by sequencing platform, 
like Illumina, are unknown and different "artifacts" on reads mixed together. So our 
experimental evaluation depends mainly on simulated reads and separately varying 
"artifacts". Additionally, real RNA-Seq data is used to confirm the simulated results. 
  
Three kinds of "artifacts", which are substitution, indel and sequencing error, together 
with read number and read length are five changing factors in simulated RNA-Seq 
datasets. Datasets with read number of 10, 20, 30, 40, 50, 60, 80, 100 million and read 
length of 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 500nt, are generated by 
BEERS. The default value of read number and read length of the datasets are 30 
million and 100nt. Close to "real" statistical values of indel frequency, substitution 
frequency and sequencing error frequency provided by BEERS, three values of each 
factor and together with the artifact-free situation (0 value) are adopted for simulating 
reads. All the "real" statistical values are default setting in BEERS. For indel are 0, 

1��&��%���,� � 1�"�����B
� 	((�1  


�!!���
�)1,�� �� -��� �� �,�1(�� ��

2 !��% ��� 2 !��% ��� 2A&�1���% ��
12��  

��A� A������(E��&�%� �

(%����
/"��A�"� B���


�%A��
/"��A�"� B���

-�����%���"
-��������B�

)����
�%�AB�B%B���

��!%��������""�"


� ��A�A����� � ������"���A


� ��A� ��"�� �����"���A

��������B�E����
� ��������������B�E����

�""�"�"�B�
�����B�&��A��A�B�&�BE

���A�B�&�BE
�"���A���

-����
��������B

�%��B����
��B��B���

���%"��E

/���


���"E

(�%" �	�

���������"E �	�  

�21(

�2�(


21(


2�(

  2



0.0005(default), 0.001, 0.0015. For substitution, 0, 0.005, 0.001(default), 0.01 and 0, 
0.005(default), 0.007, 0.009 for sequencing error(See table). 

Table 1. 

Note: Values simulating real data are in bold. Simulation datasets are noise(indel or substitution or 
sequencing error) free, with only one factor varies. 

For consideration toward transcriptome variation and computational replication, both 
human transcriptome and mouse transcriptome are simulated. hg19 of human genome 
and RefSeq transcriptome annotation is used for HTSE and HTPE. mm9 of mouse 
genome and 11 merged databases of transcriptome annotation is used for MTSE and 
MTPE. Additionally, paired-end reads simulated by BEERS are mapped as single-
ended reads and paired-end reads to see if paired-end reads could provide extra 
information for mapping and also act as computational replication.  

(2)Real RNA-Seq data 
  GSE26248: The real data where BEERS empirical gene expression distribution 
come. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26248 
  GSM958728: ENCODE RNA-Seq data published on July, 2012 of GM12878. http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM958728 

(3)Tools to be evaluated(algorithmic classification, reason to be chosen) 
Over 30 mapping tools have been published, here we select RNA mapping tools with 
fairly amount of users and timely update releases. We evaluate TopHat1,TopHat2 
GSNAP, RNASEQR, TrueSight, OLego, STAR of the their newest version before 
Dec. 31st, 2012(see table). 

Table 2（Supplement） 

Factor Values

Read number 10million, 20m, 30m, 40m, 50m, 60m, 80m, 100m

Read length 25nt, 50nt, 75nt, 100nt, 125nt, 150nt, 175nt, 200nt, 225nt, 250nt, 
500nt

Indel frequency 0, 0.0005, 0.001, 0.005, 0.01

Substitution frequency 0, 0.001, 0.005, 0.01

Sequencing error 0, 0.005, 0.007, 0.009

Publish Latest 
Release

Cite 
Times

Version Reason Link

QPALMA Bioinformatics.2008, 2010.5 87 - NNR http://www.raetschlab.org/suppl/qpalma

TopHat Bioinformatics.2009,3 2012.11 778 2.0.6 http://tophat.cbcb.umd.edu/

GSNAP Bioinformatics.2010,2 2012.11 124 - http://research-pub.gene.com/gmap/

SpliceMap Nucleic Acids Research 2010,5 2010.10 103 3.3.5.2 NNR http://www.stanford.edu/group/wonglab/SpliceMap/

MapSplice Nucleic Acids Research 2010,8 2011.3 84 2.x NNR http://www.netlab.uky.edu/p/bioinfo/MapSplice

SOAPsplice Frontiers 2011,7 2012.2 9 1.9 FU http://soap.genomics.org.cn/soapsplice.html

RUM Bioinformatics.2011,7 2012.10 28 2.0.x http://www.cbil.upenn.edu/RUM/userguide.php

RNASEQR Nucleic Acids Research 
2011.10

- 4 1.0.2 http://hood.systemsbiology.net/rnaseqr.php
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Note: Bold lines correspond to evaluated tools.  NNR, short for "no new release", means no release during the year of 2012.  FU, short for "few users", means less than 10 
citations after publishing at least one year. Data collected before Dec. 31st, 2012 

2.2.Evaluation criteria:  
For the performance of tools on simulated dataset, we mainly check three aspects: 
accuracy of aligning reads and detecting junctions, time efficiency and memory 
usage. Several criteria listed in (see table 3) are used for these three aspects. 

Table 3. 

Note: #(X) means the number of X.  

With different mapping result reported by tools, reads are classified into three 
categories: uniquely mapped reads, multiple mapped reads and unmapped reads. 
Multiple mapped reads are treated as unmapped reads if all hits of one read have 
equal confidence and as uniquely mapped reads if the tool gives priority of confidence 
of the hits of one read. The hit with highest confidence will take as this multiple 

PASSion Bioinformatics.2012,1 - 4 1.2.1 https://trac.nbic.nl/passion/

TrueSight Nucleic Acids Research 2012 2012.9 - 0.06 http://bioen-compbio.bioen.illinois.edu/TrueSight/

OLego Nucleic Acids Research 
Accepted

2012.11 - 1.0.8 http://zhanglab.c2b2.columbia.edu/index.php/OLego

GEM Nature Method 2012,12 2012.10 2 - http://algorithms.cnag.cat/wiki/The_GEM_library

STAR Bioinformatics. 2013.1 1 - http://code.google.com/p/rna-star/

Supersplat Bioinformatics2010.1 - 28 NNR http://mocklerlab.org/tools/1

PALMapper Current Protocols in 
Bioinformatics2010.10

2011.01 9 0.4 NNR, 
FU

http://cbio.mskcc.org/public/raetschlab/software/
palmapper/

MicroRazerS Bioinformatics2010.10 2009.11 9 1.0 NNR, 
FU

http://www.seqan.de/projects/microrazers/

Accuracy

Read alignment

Alignment yield(Scale: 0-1):

#(Correct reads' alignment)/ #(Total reads)

Spliced alignment yield(Scale: 0-1)

#(Correct junction reads' alignment)/ #(Junction reads in the sample)

Error yield(Scale: 0-1)

#( Correct reads' alignment)/ #(Uniquely mapped reads)

Junction detection

Effective sensitivity(Scale: 0-1)

#(Detected junctions in the sample)/ #(Junction reads in the sample)

Sensitivity(Scale: 0-1)

#(Detected junctions in the genome)/ #(Junctions in the genome)

Precision(Scale: 0-1)

#(Detected junctions in the sample)/ #(Detected junctions)

Time usage Time (Unit: h/Gb)

(Total alignment time)/#(Gb of reads)

Memory usage Peak memory(GB)
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mapped read's unique hit.  
For tools' performance on reads alignment, alignment yield is the percent of reads 
being correctly mapped and shows tool's overall capacity of finding reads' "real" 
locations. Spliced alignment yield is the percent of junction reads being correctly 
mapped and shows tool's capacity of finding junction reads' "real" locations. Error 
yield is the percent of unique hits being falsely reported and shows tool's likelihood of 
being wrong. Alignment yield may not always correspond with spliced alignment 
yield. Error yield's decrease will not guarantee (Spliced) alignment yield's increase.  
For tools' performance on junction detection, effective sensitivity is the percent of 
junctions supported by at least one read in the dataset being correctly reported and 
shows tool's capacity of detecting junction. Sensitivity is the percent of junctions 
annotated being correctly reported and also shows tool's capacity of detecting 
junction. Precision is the percent of reported junctions being correct. Good 
algorithmic design could find junctions even without read support and results in more 
detected junctions among annotated junctions. 
Time for mapping 1 Gb is used to check tool's time-efficiency. Peak memory of the 
run of a tool is examined as criteria for time usage. 
In most cases, alignment yield and spliced alignment yield, effective sensitivity and 
sensitivity, spliced alignment yield and effective sensitivity are pairs that will support 
each other. (Spliced) alignment yield and error yield, (effective) sensitivity and 
precision are pairs with tradeoffs. 
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3. RESULTS 
3.1.Features of seven RNA mapping tools 
Robustness is a nice feature of softwares. RNA mapping tools' robustness upon 
increased varying factor becomes critical in case of RNA-Seq data of relatively low 
quality. "Substitution robust", "sequencing error robust" and "indel robust" exhibit 
tools' robustness upon increased substitution frequency, sequencing error rate and 
indel frequency. They are features draw from stabilized error yield upon increased 
varying factors. RNASEQR, TopHat1 and TopHat2 are proved to be substitution 
robust and sequencing error robust. RNASEQR and TrueSight are proved to be indel 
robust according to our systematic evaluation(see table 4).  
Tools all perform normally for read length in the range of 50nt to 250nt. Short reads 
with length less than 50nt and long reads with length longer than 250nt present 
challenge to RNA mapping tools. "Long reads disposition" and "short reads 
disposition" are features indicating how well they deal with short or long reads. 
OLego, RNASEQR and STAR show good performance upon long reads. For reads 
with length 25nt, it puts stress for tools to align junction reads or detect junction 
correctly, only RNASEQR exhibits capability to deal with short reads (see table 4). 
Default parameter settings are adopted in this case. 
OLego, RNASEQR and STAR are "time efficient", which means they could finish 
mapping 100 million reads with length of 100nt within 10 hours(see table 4). 
For personal computer with memory of 4GB, OLego, RNASEQR and TopHat1 or 2 
work normally. According to our evaluation, these four tools are "memory 
efficient"(see table 4).  

Table 4. Features of seven RNA mapping tools 

Substitution robust: stabilizaed error yield upon increased substitution; Sequencing error robust: 
stabilizaed error yield upon increased sequencing error; Indel robust: stabilizaed error yield upon 
increased indel; Long reads disposition: capability of dealing with reads ＞ 250nt; Short reads 
disposition: capability of dealing with reads ＜ 50nt; Time efficient: capability of mapping reads 
with speed < 1hour/Gb; Memory efficient: capability of mapping reads with peak memory < 4GB. 
For statistical data in detail, check HTSE data or MTSE data. 

3.2.Accuracy 

GSNAP OLego RNASEQR TopHat1 TopHat2 TrueSight STAR

Substitution robust √ √ √

Sequencing error 
robust √ √ √ √

Indel robust √ √

L o n g r e a d s 
disposition √ √ √

S h o r t r e a d s 
disposition √

Time efficient √ √ √

Memory efficient √ √ √ √
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 (1)Read number 

!  
Fig 2. htse.rn.acu.tif 
For read alignment, with reads' coverage increase, all tools except for TrueSight have alignment 
yield stabilized around 0.95 and spliced alignment yield stabilized around 0.9. Compared with 
OLego and STAR which have error yield stabilized around 0.06, GSNAP, TopHat2, TrueSight, 
TopHat1, RNASEQR yields lower error, which are all less than 0.05. 
For junction detection, with reads' coverage increase, which also means more junctions being 
included, effective sensitivity and sensitivity increase, which means more junctions being 
detected. The precision of tools decrease which indicates that there are new junction being 
included but not correctly detected. 

(2)Read length 

!  
Fig 3. (read length) 
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(3)Sequencing error 

!  
Fig 4.(Sequencing error) 
For read alignment, all tools are affected by more sequencing error. By yielding more error, 
OLego, GSNAP and STAR are proved to be more sequencing error sensitive and TopHat1, 
TopHat2, TrueSight and RNASEQR are sequencing error robust with stabilized error yield. 
For junction detection, STAR is more aggressive by demonstrating the highest effective sensitivity 
and sensitivity and lowest precision which means STAR finds the most junctions but makes the 
largest mistakes. GSNAP is secondly aggressive. Other tools are not much affected by more 
sequencing error for maintaining stabilized effective sensitivity, sensitivity and precision. 
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(4)Indel 

!  
Fig 5.(Indel) 
For read alignment, all tools' performance are affected by more indels. Only two tools which are 
TrueSight and RNASEQR show robustness upon more indels and other tools include OLego, 
GSNAP, STAR, TopHat1 and TopHat2 yield increased error with more indels in the sample. 
For junction detection, STAR and GSNAP are more aggressive by demonstrating the highest 
effective sensitivity and sensitivity and lowest precision which means they find the most junctions 
but makes the largest mistakes. Other tools are not much affected by indel for maintaining 
stabilized precision. 
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(5)Substitution  

!  
Fig 6. (substitution) 
For read alignment, all tools are affected by more substitution. By yielding more error, OLego, 
GSNAP and STAR are proved to be more substitution sensitive and TopHat1, TopHat2, TrueSight 
and RNASEQR are substitution robust with stabilized error yield. 
For junction detection, STAR is more aggressive by demonstrating the highest effective sensitivity 
and sensitivity and lowest precision which means STAR finds the most junctions but makes the 
largest mistakes. GSNAP is secondly aggressive. Other tools are not much affected by more 
substitutions for maintaining stabilized effective sensitivity, sensitivity and precision. 
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(6)Paired-end reads 

3.3.Time efficiency and memory usage 

! !  

! ! !  
Fig 7. 
Table 5. Average time and peak memory use of tools 

For time efficiency, we take hours used to map 1 Gb as criteria. Fast tools, include STAR with 
speed 0.177 hour/Gb, OLego with 0.515 hour/Gb and RNASEQR with 0.526 hour/Gb, could 
finish mapping 1 Gigabase reads in 1 hour. Other tools, include GSNAP, TopHat2, TopHat1 are 

GSNAP OLego RNASEQR TopHat1 TopHat2 TrueSight STAR

AVR(Time), hour/
Gb 7.649 0.514 0.526 4.046 6.570 4.680 0.186

VAR(Time) 0.145 0.036 0.041 0.120 0.142 1.262 0.023

A V R ( P e a k 
memory), GB 5.422 3.839 2.307 2.305 3.354 8.910 28.041

V A R ( P e a k 
memory) 0.025 0.040 0.000 0.000 0.012 8.356 0.157
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7.649 hour/Gb, 6.570 hour/Gb and 4.046 hour/Gb fast(Table). TrueSight has a good feature to 
increase speed from 6.497 hour/Gb to 2.560 hour/Gb with read coverage increase(Figure).  
For memory usage, we take peak memory of one run as criteria. OLego, RNASEQR, TopHat1, 
TopHat2 use less than 4GB memory maximally. Because of time and memory trade-off, STAR 
needs 28GB memory.  

3.4.Real data(accuracy, time usage, memory usage) 
Percent of uniquely mapped reads 

4. DISCUSSION 
Varying factors like substitution, sequencing error, indel have been explored 
separately. In real situation, all varying factor will mix together. It's hard to evaluate 
which tool solve the problem best. A gold standard for choosing most suitable tool is 
impossible to find. But memory efficiency will become critical if users are using 
laptop computer conducting RNA-Seq mapping. Moreover, with RNA-Seq technique 
develops, throughput and read length tend to increase, then time efficiency and long 
reads disposition will be non-trivial. 
Interesting problems not explored in this paper, include mapping result's influence on 
isoform's abundance estimation using tools like cufflinks and also parallel mapping's 
improvement to each RNA mapping tools. 
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