An Experimental Evaluation of the Performance of RNA-Seq
Mapping Tools
ABSTRACT

Transcriptome sequencing (RNA-Seq) has become a key technology in the field of
transcriptomics for quantifying gene expression, detecting novel transcripts, analyzing
RNA functions, etc. For organisms with reference genomes, mapping RNA-Seq reads
to the genomic sequences is typically the first step to process RNA-Seq data. In the
last few years, many algorithms and tools for mapping RNA-Seq reads have been
developed. Since the objectives and constraints of these methods are usually different,
their performance varies. How to choose the most appropriate mapping tools to
analyse a specific RNA-Seq dataset so some particular performance expectations can
be met is an important question that bioinformaticians need to address. Here, we
provide a systematic experimental evaluation of some state-of-the-artRNA-Seq
mapping tools by studying their accuracy in read alignment and junction detection on
simulated RNA-Seq data with different sequencing depths,read lengths and rates of
substitutions, indels and sequencing error. In addition, the time efficiency and
memory usages of the tools will beinvestigated. We are also interested in the impact
of paired-end reads on the performance of the tools and the question of to what degree
the tools are able to take advantage of parallel computation. Some real data tests will
be used to confirm the simulation results. We hope that our study will provide
information useful for choosing suitable mapping tools in RNA-Seq data analysis.

1. INTRODUCTION

Transcriptome is an important part of the cell. RNA-seq based on next-generation
sequencing(NGS) provides a powerful technique for transcriptome profiling(Wang,
Gerstein et al. 2009). Bringing insights to quantifying gene expression, detecting
novel transcripts, analyzing RNA functions, and etc., RNA-Seq is proved to be a
accurate method to survey the entire transcriptome in a quantitative and high-
throughput way than expressed sequence tag(EST) sequencing and microarray
technology.

A critical step in analyzing RNA-Seq data is to map millions of reads back to a
reference genome. Various mapping tools targeted on mapping DNA, RNA, miRNA
or bisulfate reads, have been developed(Fonseca, Rung et al. 2012). With specific
consideration to processing junction reads from RNA-Seq, RNA mapping tools plays
an important role in analyzing RNA-Seq data.

From early RNA-Seq mapping tools include TopHat(Trapnell, Pachter et al. 2009)

, SpliceMap(Au, Jiang et al. 2010) and MapSplice(Wang, Singh et al. 2010) to newly
published tools include OLego(Wu, Anczukéw et al. 2013), TrueSight(Li, Li-Byarlay
et al. 2012) and STAR(Dobin, Davis et al. 2012), over fifteen RNA-Seq mapping
tools have been developed(see table 2). Which tool to choose according to certain
time and memory constrain and data features is an issue waits to be addressed.

Some review papers on mapping tools have been published to address this problem.
Those papers either present a algorithmic summary (Garber, Grabherr et al. 2011) or
summarize mapping tools documentations(Fonseca, Rung et al. 2012), yet provide
few recommendation on choosing suitable mapping tools for RNA-Seq data.

This paper aims testing seven state of the art RNA mapping tools, thus provide
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information on different features of those tools and better guide choosing suitable tool
fitting specific RNA-Seq data.

2. METHODS

Our evaluation consists of three steps: (1)simulate RNA-Seq reads by BEERS(Grant,
Farkas et al. 2011)(2)map simulated reads to the reference genome by seven selected
RNA mapping tools(3)evaluate the performance of mapping(see fig 1).
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Fig 1. legend. Experimental evaluation process. (1)RNA-Seq dataset of human and
mouse transcriptome with different features are generated by BEERS (2) Selected
tools map reads to genomic reference dataset by dataset and take reads as single-
ended or paired-end separately. (3) Mapping result of each tool on each dataset as
single-ended or paired-end reads is evaluated according criteria listed in the figure. (4)
Four sets of evaluation results are obtained: HTSE( Evaluation on dataset of Human
Transcriptome mapped as Single-ended reads), HTPE(Evaluation on dataset of human
transcriptome mapped as paired-end reads), MTSE(Evaluation on dataset of mouse
transcriptome mapped as single-ended reads), MTPE(Evaluation on dataset of mouse
transcriptome mapped as paired-end reads).

2.1 .Experimental design

(1) Simulate RNA-Seq Reads

The "real" genomic locations of RNA-Seq reads generated by sequencing platform,
like Illumina, are unknown and different "artifacts" on reads mixed together. So our
experimental evaluation depends mainly on simulated reads and separately varying
"artifacts". Additionally, real RNA-Seq data is used to confirm the simulated results.

Three kinds of "artifacts", which are substitution, indel and sequencing error, together
with read number and read length are five changing factors in simulated RNA-Seq
datasets. Datasets with read number of 10, 20, 30, 40, 50, 60, 80, 100 million and read
length of 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 500nt, are generated by
BEERS. The default value of read number and read length of the datasets are 30
million and 100nt. Close to "real" statistical values of indel frequency, substitution
frequency and sequencing error frequency provided by BEERS, three values of each
factor and together with the artifact-free situation (0 value) are adopted for simulating
reads. All the "real" statistical values are default setting in BEERS. For indel are 0,
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0.0005(default), 0.001, 0.0015. For substitution, 0, 0.005, 0.001(default), 0.01 and 0,
0.005(default), 0.007, 0.009 for sequencing error(See table).

Table 1.

Factor Values
Read number | 10million, 20m, 30m, 40m, 50m, 60m, 80m, 100m

Read length | 25nt, 50nt, 75nt, 100nt, 125nt, 150nt, 175nt, 200nt, 225nt, 250nt,
500nt

Indel frequency | 0, 0.0005, 0.001, 0.005, 0.01
Substitution frequency | 0, 0.001, 0.005, 0.01
Sequencing error | 0, 0.005, 0.007, 0.009

Note: Values simulating real data are in bold. Simulation datasets are noise(indel or substitution or
sequencing error) free, with only one factor varies.

For consideration toward transcriptome variation and computational replication, both
human transcriptome and mouse transcriptome are simulated. hg19 of human genome
and RefSeq transcriptome annotation is used for HTSE and HTPE. mm9 of mouse
genome and 11 merged databases of transcriptome annotation is used for MTSE and
MTPE. Additionally, paired-end reads simulated by BEERS are mapped as single-
ended reads and paired-end reads to see if paired-end reads could provide extra
information for mapping and also act as computational replication.

(2)Real RNA-Seq data
GSE26248: The real data where BEERS empirical gene expression distribution
come. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26248
GSM958728: ENCODE RNA-Seq data published on July, 2012 of GM12878. http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM958728

(3)Tools to be evaluated(algorithmic classification, reason to be chosen)

Over 30 mapping tools have been published, here we select RNA mapping tools with
fairly amount of users and timely update releases. We evaluate TopHatl,TopHat2
GSNAP, RNASEQR, TrueSight, OLego, STAR of the their newest version before
Dec. 31st, 2012(see table).

Table 2 (Supplement)

Publish Latest Cite Version | Reason Link
Release Times
QPALMA Bioinformatics.?"%. 2010.5 87 - NNR http://www.raetschlab.org/suppl/qpalma

TopHat Bioinformatics. 203 2012.11 778 2.0.6 http://tophat.cbcb.umd.edu/

GSNAP Bioinformatics. 2102 2012.11 124 - http://research-pub.gene.com/gmap/
SpliceMap | Nucleic Acids Research?0'%3 2010.10 103 3352 NNR http://www.stanford.edu/group/wonglab/SpliceMap/
MapSplice | Nucleic Acids Research?°'%3 2011.3 84 2x NNR http://www.netlab.uky.edu/p/bioinfo/MapSplice

SOAPsplice Frontiers 201\ 2012.2 9 1.9 FU http://soap.genomics.org.cn/soapsplice.html
RUM Bioinformatics.»*" 2012.10 28 2.0.x http://www.cbil.upenn.edu/RUM/userguide.php
RNASEQR Nucleic Azﬁtl'tll]voResearch - 4 1.0.2 http://hood.systemsbiology.net/rnaseqr.php



https://github.com/PGFI/rum/wiki/Transitioning-from-RUM-1-to-RUM-2

PASSion Bioinformatics.2"1>! - 4 1.2.1 https://trac.nbic.nl/passion/
TrueSight | Nucleic Acids Research**"? 2012.9 - 0.06 http://bioen-compbio.bioen.illinois.edu/TrueSight/
OLego Nucleic /zcid[s :Zesearch 2012.11 - 1.0.8 http://zhanglab.c2b2.columbia.edu/index.php/OLego
ceepte
GEM Nature Method **'*12 2012.10 2 - http://algorithms.cnag.cat/wiki/The_GEM_library
STAR Bioinformatics. 2013.1 1 - http://code.google.com/p/rna-star/
Supersplat Bioinformatics?10-! - 28 NNR http://mocklerlab.org/tools/1
PALMapper Current Protocols in 2011.01 9 0.4 NNR, http://cbio.mskcc.org/public/raetschlab/software/
Bioinformatics®'10-10 FU palmapper/
MicroRazerS Bioinformatics*'10-10 2009.11 9 1.0 NFI\IIJR, http://www.seqan.de/projects/microrazers/

Note: Bold lines correspond to evaluated tools. NNR, short for "no new release", means no release during the year of 2012. FU, short for "few users", means less than 10
citations after publishing at least one year. Data collected before Dec. 31st, 2012

2.2 .Evaluation criteria:

For the performance of tools on simulated dataset, we mainly check three aspects:
accuracy of aligning reads and detecting junctions, time efficiency and memory
usage. Several criteria listed in (see table 3) are used for these three aspects.

Table 3.

Accuracy

Alignment yield(Scale: 0-1):

#(Correct reads' alignment)/ #(Total reads)

Spliced alignment yield(Scale: 0-1)

Read alignment
#(Correct junction reads' alignment)/ #(Junction reads in the sample)

Error yield(Scale: 0-1)

#( Correct reads' alignment)/ #(Uniquely mapped reads)

Effective sensitivity(Scale: 0-1)

#(Detected junctions in the sample)/ #(Junction reads in the sample)

Sensitivity(Scale: 0-1)

Junction detection
#(Detected junctions in the genome)/ #(Junctions in the genome)

Precision(Scale: 0-1)

#(Detected junctions in the sample)/ #(Detected junctions)

Time usage Time (Unit: h/Gb)

(Total alignment time)/#(Gb of reads)

Memory usage Peak memory(GB)

Note: #(X) means the number of X.

With different mapping result reported by tools, reads are classified into three
categories: uniquely mapped reads, multiple mapped reads and unmapped reads.
Multiple mapped reads are treated as unmapped reads if all hits of one read have
equal confidence and as uniquely mapped reads if the tool gives priority of confidence
of the hits of one read. The hit with highest confidence will take as this multiple

4



mapped read's unique hit.

For tools' performance on reads alignment, alignment yield is the percent of reads
being correctly mapped and shows tool's overall capacity of finding reads' "real"
locations. Spliced alignment yield is the percent of junction reads being correctly
mapped and shows tool's capacity of finding junction reads' "real" locations. Error
yield is the percent of unique hits being falsely reported and shows tool's likelihood of
being wrong. Alignment yield may not always correspond with spliced alignment
yield. Error yield's decrease will not guarantee (Spliced) alignment yield's increase.
For tools' performance on junction detection, effective sensitivity is the percent of
junctions supported by at least one read in the dataset being correctly reported and
shows tool's capacity of detecting junction. Sensitivity is the percent of junctions
annotated being correctly reported and also shows tool's capacity of detecting
junction. Precision is the percent of reported junctions being correct. Good
algorithmic design could find junctions even without read support and results in more
detected junctions among annotated junctions.

Time for mapping 1 Gb is used to check tool's time-efficiency. Peak memory of the
run of a tool is examined as criteria for time usage.

In most cases, alignment yield and spliced alignment yield, effective sensitivity and
sensitivity, spliced alignment yield and effective sensitivity are pairs that will support
each other. (Spliced) alignment yield and error yield, (effective) sensitivity and
precision are pairs with tradeoffs.



3. RESULTS

3.1.Features of seven RNA mapping tools

Robustness is a nice feature of softwares. RNA mapping tools' robustness upon
increased varying factor becomes critical in case of RNA-Seq data of relatively low
quality. "Substitution robust", "sequencing error robust" and "indel robust" exhibit
tools' robustness upon increased substitution frequency, sequencing error rate and
indel frequency. They are features draw from stabilized error yield upon increased
varying factors. RNASEQR, TopHatl and TopHat2 are proved to be substitution
robust and sequencing error robust. RNASEQR and TrueSight are proved to be indel
robust according to our systematic evaluation(see table 4).

Tools all perform normally for read length in the range of 50nt to 250nt. Short reads
with length less than 50nt and long reads with length longer than 250nt present
challenge to RNA mapping tools. "Long reads disposition" and "short reads
disposition" are features indicating how well they deal with short or long reads.
OLego, RNASEQR and STAR show good performance upon long reads. For reads
with length 25nt, it puts stress for tools to align junction reads or detect junction
correctly, only RNASEQR exhibits capability to deal with short reads (see table 4).
Default parameter settings are adopted in this case.

OLego, RNASEQR and STAR are "time efficient", which means they could finish
mapping 100 million reads with length of 100nt within 10 hours(see table 4).

For personal computer with memory of 4GB, OLego, RNASEQR and TopHatl or 2
work normally. According to our evaluation, these four tools are "memory
efficient"(see table 4).

Table 4. Features of seven RNA mapping tools

GSNAP | OLego | RNASEQR | TopHatl | TopHat2 | TrueSight | STAR
Substitution robust N N N
Sequencing error
robust v v V V
Indel robust N \
Long reads
disposition v v v
Short reads J
disposition
Time efficient N N \
Memory efficient N N N N

Substitution robust: stabilizaed error yield upon increased substitution; Sequencing error robust:
stabilizaed error yield upon increased sequencing error; Indel robust: stabilizaed error yield upon

increased indel; Long reads disposition: capability of dealing with reads > 250nt; Short reads
disposition: capability of dealing with reads < 50nt; Time efficient: capability of mapping reads

with speed < 1hour/Gb; Memory efficient: capability of mapping reads with peak memory < 4GB.
For statistical data in detail, check HTSE data or MTSE data.

3.2.Accuracy
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For read alignment, with reads' coverage increase, all tools except for TrueSight have alignment
yield stabilized around 0.95 and spliced alignment yield stabilized around 0.9. Compared with
OLego and STAR which have error yield stabilized around 0.06, GSNAP, TopHat2, TrueSight,
TopHatl, RNASEQR yields lower error, which are all less than 0.05.
For junction detection, with reads' coverage increase, which also means more junctions being
included, effective sensitivity and sensitivity increase, which means more junctions being
detected. The precision of tools decrease which indicates that there are new junction

included but not correctly detected.

(2)Read length
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(3)Sequencing error
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Fig 4.(Sequencing error)

For read alignment, all tools are affected by more sequencing error. By yielding more error,
OLego, GSNAP and STAR are proved to be more sequencing error sensitive and TopHatl,
TopHat2, TrueSight and RNASEQR are sequencing error robust with stabilized error yield.

For junction detection, STAR is more aggressive by demonstrating the highest effective sensitivity
and sensitivity and lowest precision which means STAR finds the most junctions but makes the
largest mistakes. GSNAP is secondly aggressive. Other tools are not much affected by more
sequencing error for maintaining stabilized effective sensitivity, sensitivity and precision.



(4)Indel
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For read alignment, all tools' performance are affected by more indels. Only two tools which are
TrueSight and RNASEQR show robustness upon more indels and other tools include OLego,
GSNAP, STAR, TopHat1 and TopHat?2 yield increased error with more indels in the sample.

For junction detection, STAR and GSNAP are more aggressive by demonstrating the highest
effective sensitivity and sensitivity and lowest precision which means they find the most junctions
but makes the largest mistakes. Other tools are not much affected by indel for maintaining
stabilized precision.



(5)Substitution
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Fig 6. (substitution)

For read alignment, all tools are affected by more substitution. By yielding more error, OLego,
GSNAP and STAR are proved to be more substitution sensitive and TopHat1, TopHat2, TrueSight

and RNASEQR are substitution robust with stabilized error yield.

For junction detection, STAR is more aggressive by demonstrating the highest effective sensitivity
and sensitivity and lowest precision which means STAR finds the most junctions but makes the

largest mistakes. GSNAP is secondly aggressive. Other tools are not much affected by more
substitutions for maintaining stabilized effective sensitivity, sensitivity and precision.
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(6)Paired-end reads
3.3. Time efficiency and memory usage
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Table 5. Average time and peak memory use of tools

GSNAP | OLego | RNASEQR | TopHatl | TopHat2 | TrueSight | STAR

éXR(T‘me)’ hour/ | - c49 | 0514 | 0526 | 4046 | 6570 | 4.680 | 0.186

VAR(Time) 0.145 | 0.036 0.041 0.120 0.142 1.262 0.023

AVR(Peak
memory), GB 5422 | 3.839 2.307 2305 | 3.354 8.910 | 28.041

VAR (Peak
memory) 0.025 | 0.040 0.000 0.000 0.012 8.356 0.157

For time efficiency, we take hours used to map 1 Gb as criteria. Fast tools, include STAR with
speed 0.177 hour/Gb, OLego with 0.515 hour/Gb and RNASEQR with 0.526 hour/Gb, could
finish mapping 1 Gigabase reads in 1 hour. Other tools, include GSNAP, TopHat2, TopHatl are

11



7.649 hour/Gb, 6.570 hour/Gb and 4.046 hour/Gb fast(Table). TrueSight has a good feature to
increase speed from 6.497 hour/Gb to 2.560 hour/Gb with read coverage increase(Figure).

For memory usage, we take peak memory of one run as criteria. OLego, RNASEQR, TopHatl,
TopHat2 use less than 4GB memory maximally. Because of time and memory trade-off, STAR
needs 28GB memory.

3.4.Real data(accuracy, time usage, memory usage)
Percent of uniquely mapped reads

4. DISCUSSION

Varying factors like substitution, sequencing error, indel have been explored
separately. In real situation, all varying factor will mix together. It's hard to evaluate
which tool solve the problem best. A gold standard for choosing most suitable tool is
impossible to find. But memory efficiency will become critical if users are using
laptop computer conducting RNA-Seq mapping. Moreover, with RNA-Seq technique
develops, throughput and read length tend to increase, then time efficiency and long
reads disposition will be non-trivial.

Interesting problems not explored in this paper, include mapping result's influence on
isoform's abundance estimation using tools like cufflinks and also parallel mapping's
improvement to each RNA mapping tools.
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